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Abstract. Sterically stabilized colloidal dispersions, such as PMMA, have long been regarded
as archetypal realizations of hard spheres and hard-sphere mixtures. Indeed, this is precisely what
is found in studies of these systems as a function of the volume fraction, at constant temperature.
However, a much richer behaviour—which goes beyond what is expected from just hard spheres—
is found as a function of both volume fraction and temperatureT . For instance, sterically stabilized
colloids are known to exhibit both upper (high-T ) and lower (low-T ) two-phase behaviour, such
that the former is temperature sensitive but the latter is not.

We review model calculations based on a double Yukawa potential that exhibits some of the
rich phase behaviour found experimentally, and predicting other behaviour which has not yet been
found by experiment. Both the former and latter show a degree of similarity to the phase behaviour
of polymer solutions. We also present preliminary results for the phase behaviour of bidisperse
model sterically stabilized colloids.

1. Introduction

In a good solvent environment, with appropriate refractive index matching for stabilizing
attached polymer species, monodisperse sterically stabilized colloidal dispersions may be
regarded as archetypal hard-sphere systems. This finding allowed for some fine and impressive
fundamental research on the behaviour of these model systems (see, for instance, [1]).

Actually the effective repulsive potential in sterically stabilized colloidal dispersions is
softer than a hard-sphere repulsion. The colloidal stability of polystyrene lattices with adsorbed
acidic polysaccharides has been found to increase with an increase in the steric layer thickness
[2]. This, in turn, suggests that colloidal stability can be controlled by temperature,T , because
T has important effects on the conformation of polymers and the solvent condition. Significant
theoretical work on the conformation of polymers adsorbed at surfaces supports this conjecture.
Earlier work is documented in the books by Napper [3] and de Gennes [4]; more recent work
is referenced in the recent review by Szleifer [5]. We shall see below that, within the model
we have put forward to account for the temperature dependence of the steric interaction,
the temperature dependence acts in two ways: first on the steric layer thickness, second in
uncovering deeper parts of the van der Waals attraction.
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In developing our model effective potential we have taken into account the following
experimental results.

(i) Non-aqueous dispersions of silica spheres stabilized by an adsorbed layer of C18 chains
have been shown to display—on both heating and cooling—a reversible phase separation
from a single homogeneous dispersed phase into a system of coexisting dilute and
concentrated dispersed phases. This behaviour resembles the coexisting liquid and
vapour phases of simple fluids. A similar behaviour has been also observed in depleted
stabilized colloidal dispersions. Moreover, sterically stabilized colloidal dispersions show
order–disorder transitions as a function of the dispersed phase concentration, similar to
the melting/freezing transition in atomic and molecular systems [6, 7].

(ii) The phase diagram of sterically stabilized colloidal dispersions as a function ofT and
particle densityρ, or volume (packing) fractionη, is particularly remarkable due to the
presence of both upper (high-T ), and lower (low-T ), two-phase coexistence regions. The
experimental data of Edwardset al [8], following a procedure originally proposed and
studied by van Heldenet al [9], were obtained from silica spheres, each carrying a layer
of terminally grafted C18, dispersed in three different solvents with similar Hamaker
constants. At higher temperatures the threeconcave-upcoexistence curves are similar
in shape but separated by temperature. This feature suggests that the thickness of the
polymer coat does depend on the polymer–solvent interaction. At lower temperatures,
three almost coincidentconcave-downcurves appear in the composite phase diagram. At
these lower temperatures the polymer coats are believed to be maximally stretched in all
three systems and so should not influence the phase transition mechanism [10].

(iii) A colloidal system consisting of spherical silica particles, densely covered with linear
hydrocarbon chains, is sterically stabilized when dispersed in a solvent such as toluene.
An interesting aspect of the effect of temperature variation is a non-monotonic temperature
dependence of the second virial coefficientB2(T ) [11, 12].

In order to describe the preceding, and a few other, results we have proposed a double
Yukawa potential, where we assume that the inverse decay lengthλof the repulsive contribution
is temperature dependent. In doing so we are assuming that the details of the polymer
conformations are not as important as the thickness of the steric layer. We shall see below that,
at least qualitatively, this assumption appears to reproduce the experimental trends referred to
above.

We present, in the following sections, a brief review of work done using the above
potential. We also present results for a bidisperse sterically stabilized colloidal dispersion.
In section 2 we present the formalism used in our work: the double Yukawa potential and the
Gibbs–Bogoliubov (GB) variational approach with which we carried out our calculations [13].
Results for the monodisperse case are reviewed in section 3.1, whereas results for the mixtures
are presented in section 3.2. We sum up and briefly discuss our results in section 4.

2. Theory

The formalism presented below is written for the case of mixtures, of which the single-
component system is a particular case.

The effective double Yukawa potentials (DY) we have proposed to account for the steric
interactions read

vij (r) = Eij εij dij

r

{
exp

[
−Aij
dij
(λij (T )r − dij )

]
− exp

[
−Bij
dij
(r − dij )

]}
. (1)
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The positive, dimensionless, coefficientsEij , Aij and Bij are adjustable, and their
parametrization is discussed in the next section. Theλij functions are assumed to depend
only on temperature;dij andεij are, respectively, the particle diameters and potential wells
at λ = 1. The particle diameters are assumed to be additive, i.e.d12 = 1

2(d1 + d2), wheredi
denotes the hard-sphere diameter of componenti.

In the GB variational approach used in this work, the Helmholtz free energyF of a binary
mixture withN = N1 +N2 particles, in a volumeV , at temperatureT satisfies the inequality

F

NkBT
≡ f 6 f̃ = f HS + f1 (2)

wheref HS denotes the reduced Helmholtz free energy of the hard-sphere (HS) reference
system, and

f1 = 2πρβ
∑
i,j

xixj

∫ ∞
0
vij (r)g

HS
ij (r)r

2 dr. (3)

In equation (3)ρ denotes the number density of the system,β is the inverse ofT times the
Boltzmann constantkB, xi the concentration of componenti, such that

∑
xi = 1, andgHS

ij (r)

the HS pair distribution functions.
The optimized free energy of the system is deduced by imposing the condition(

∂f̃

∂ηi

) ∣∣∣∣
xi ,T

= 0 (4)

where

ηi = 1
6πρxid

3
i

is the HS packing fraction of componenti. Then, for the values ofηi that satisfy equation (4),
sayηopt

i ,

f̃ ∼= f
and the equation of state reads [14]

βP

ρ
= 1− 2

3
πβρ

∑
i,j

xixj

∫ ∞
0
v′ij (r)g

HS
ij (r)r

3 dr (5)

whereP denotes the pressure, and

v′ij (r) =
∂v

∂r
.

The advantage of using this formalism with a DY potential is that both equation (3) and
equation (5) can be written in a compact analytic form by using the analytic expressions of the
Laplace transforms of the pair distribution functions in the Percus–Yevick (PY) approximation
[15]. Following the work by Ashcroft and Foiles [16] (see also Gonzalez and Silbert [17])
for the one-component case, we usef HS obtained from the PY virial equation of state [18].
Finally, we note that the chosen optimization procedure, equation (4), is not unique. We could
have equally chosen the hard-sphere diameters,di , as the variational parameters, leading to
the same variational equations for the Helmholtz free energy and the equation of state [14].

3. Results

We present below the results of our calculations. We consider first the effective monodisperse
case, of which we review results, which have been either reported in the literature or in the
PhD thesis of one of us (EC) [19]. The second part presents preliminary results of ongoing
work for one particular case of a bidisperse system.
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Figure 1. The effect of the collapse coefficient on the temperature dependent double Yukawa
potential: (a)λ = 1.2; (b)λ = 1.0 (the ‘Lennard-Jones’ case; see text); (c)λ = 0.9; (d)λ = 0.8;
(e)λ = 0.7 (after [22]).

3.1. Monodisperse system

The parametersA,B andE for the monodisperse case are fitted, forλ = 1, to mimic as closely
as possible a 12–6 Lennard-Jones (LJ) potential. The choice ofA = 14.1867,B = 2.7369 and
E = 2.0816 is in accord with such requirement, and is similar to the values used in [16]. We
have cross-checked our values for the parametersA, B andE by estimating the equilibrium
cohesive energy, bulk modulus and elastic constants of a low-temperature LJ solid [20]. We
have also calculated the liquid–solid transition using the Einstein model for the solid phase,
and choosing Einstein’s temperature

θE = h̄ωE

kBT

as the variational parameter (see Shih and Stroud [21]).
The introduction ofλ(T ) into the repulsive term of the DY potential, equation (1), enables

the potential to take on different shapes for different values ofλ. This is illustrated in figure 1.
We find that small variations inλ(T )—while preserving the form of the potential at large
distances—results in asoft-to-hardtransition in the form of the repulsive contributions to the
potential, together with clear variations of the effective core diameter (namely the diameter of
the dispersed particle plus the polymer coat). Although the attractive van der Waals interaction
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between the macroparticles is only weakly dependent onT , mainly as a result of the temperature
dependence of the Hamaker constantAH, it is usual to assume that

AH

kBT

∼= 1

which we have used in our work. As for the repulsive part of the potential we note that, for
valuesλ > 1, the depth of the potential becomes shallower. In this case our potential mimics
a θ , or better thanθ , behaviour for the polymer coat, very similar to the hard-sphere case.
On the other hand, for values ofλ < 1 the effective diameter becomes smaller, uncovering
increasingly larger potential wells, and thus mimicking poor solvent conditions. Henceforth
we callλ(T ) thecollapse coefficient.

In order to calculate the phase behaviour of the system using the DY potential, we must
specify the temperature dependence of the collapse coefficient. This choice is arbitrary.
However, as we show below, the choices we make provide useful insights into the possible
mechanisms of the phase behaviour of sterically stabilized colloids. We start by assuming a
simple linear temperature dependence, namely

λ(T ∗) = mT ∗ + n (6)

where

T ∗ = kBT

ε

denotes the reduced temperature. We have used two sets of values form andn as shown in
figure 2(a). The coefficientsm andn in the line labelled A have the values

m−1
A = 9.63 and nA = 0.85

whereas in the line labelledB they have the values

m−1
B = 0.602 and nB = 0.7894.

We proceed to study the liquid–gas coexistence curves, for values ofλ that lead to positive
values of the pressure (for further details see [22]) by using the double-tangent construction.
The results are shown in figure 2(b). It is possible to work out the coexistence curves for more
complicated, but still linear, dependence ofλ onT ∗ the details of which may be found in [22].
Within our model potential the existence of the upper coexistence curve is explained in terms
of the collapse of the attached polymer layer with increasing temperature. We find that a linear
increase inλ, caused by a linear increase inT , yields a not necessarily linearsoft-to-hardtran-
sition with an associated small decrease of the core diameter, as indicated in figure 1. On the
other hand, the lower coexistence curve arises from the van der Waals forces. At these lower
temperatures the attached polymer chains are fully stretched and, likewise, the repulsive com-
ponent of the DY potential is fully extended. The phase transition of this almostT -independent
potential has the same mechanism as that of single-component Lennard-Jones systems.

We now turn to our results for the order–disorder transitions at high dispersed volume
fractions; this is fully discussed by Canessaet al [23]. We assumeλ to depend linearly onT ∗,
but with a smaller slope at lowT ∗ and a larger slope at highT ∗, as shown in figure 3(a). The
phase behaviour which results from thisλ(T ∗) is shown in figure 3(b). Here we find again
the concave-down and concave-up coexistence curves shown in figure 2(b). Moreover we find
two triple points where the colloidal solid, liquid and gas coexist. The freezing of the colloidal
solid occurs when the packing fraction reaches the valueη ∼= 0.49. In the results shown in
figure 3(a), free energy considerations require the sterically stabilized colloidal solid to have
an FCC structure. Note that the form of the phase diagram at high temperatures is sensitive to
λ(T ∗).
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(a)

(b)

Figure 2. (a) Linear temperature variation of the collapse coefficient. The line A gives rise to the
concave-up and concave-down phase separation curves labelled (A) shown in (b); the dotted line B
gives rise to the intermediate concave-up coexistence curve (B), also shown in (b). (b) Calculated
phase diagram of a sterically stabilized colloidal dispersion in the reduced temperatureT ∗–reduced
densityρ∗ plane which is obtained by using theλ(T ∗) shown in (a). Solid line: coexistence curves;
dotted lines: spinodal curves.
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(a)

(b)

Figure 3. (a). Temperature dependence of the collapse coefficient used in the calculation of the
phase diagram shown in (b). (b)T ∗–ρ∗ phase diagram of a sterically stabilized colloidal dispersion
which is obtained by using theλ(T ∗) shown in (a). G, F, L and S denote the gas, fluid, liquid and
solid phases respectively. L + G indicates the liquid–gas coexistence region, and similarly for S+L.

If we now assume thatλ(T ∗) behaves as shown in figure 4(a), the(ρ∗–T ∗) phase diagram
of figure 4(b) is obtained [24], whereρ∗ = ρd3 denotes the reduced density. If we consider the
dotted-line form forλ(T ∗), an upper and lower liquid–vapour phase coexistence is obtained—
enclosed by the dotted lines shown in figure 4(b)—where two regions of limited miscibility
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(a)

(b)

Figure 4. (a). Temperature dependence of the collapse coefficient. The dotted and solid lines give
rise to the phase behaviour shown by dotted and solid lines in (b). (b)T ∗–ρ∗ phase diagram of a
sterically stabilized colloidal dispersion which is obtained by using theλ(T ∗) shown in (a). G, L
and S denote the gas, liquid and solid phases respectively. L+G indicate the liquid–gas coexistence
region, and similarly for S + L. Note that only dotted lines enclose upper and lower liquid–vapour
coexistence; the solid line exhibits an hourglass type phase transition (see text).
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are present. These two phases are separated by a finiteT interval. Moreover, one region lies
below an upper critical temperature; the other lies above a lower critical temperature. As in
the preceding case, the final form of the(ρ∗–T ∗) phase diagram at high temperatures is very
sensitive to the chosenλ(T ∗). If we now assumeλ(T ∗) to have the form of the solid line in
figure 4(a), the two phase separated regions now overlap, leaving only a very dilute and a more
concentrated colloidal dispersion to exist independently as single phases. Such an unusual
phase diagram has been observed in polymer solutions [25], where the two regions are known
to overlap and to form anhourglasstype of phase diagram, showing limited miscibility at all
temperatures.

If the temperature dependence ofλ(T ∗) shown in figure 3(a) is slightly altered such
that λ once more attains a constant value at highT—which would physically occur if the
polymer coating surrounding the macroparticle became compact—interesting changes appear
in the phase diagram. Theλ(T ∗) shown in figure 5(a) displays this class of behaviour which
results in the phase diagram shown in figure 5(b). Compaction of the polymer layer is the
key ingredient in producing the closed consolute line for the upper liquid–vapour two-phase
coexistence region shown in figure 5(b). The closing of the upper two-phase regions arises
becauseλ reaches an almost constant value after the system has already entered a two-phase
region with increasing temperature. The closed consolute line is bounded above and below
by critical points. Closed consolute lines are known to exist in miscellar systems [26], and
in binary mixtures of organic liquids and water [27]. It would be very useful to investigate
experimentally whether monodisperse sterically stabilized colloidal dispersions are actually
capable of exhibiting the phase behaviour predicted in figure 5(b) by our model calculations.
We note in passing that closed consolute lines have been predicted by van Roijet al [28] in
their calculations of low-salt suspensions of charged stabilized colloidal particles.

3.2. Bidisperse systems

We present below preliminary results for a binary mixture of sterically stabilized colloids. We
have chosen the following parametrization. We assume that the parametersEij , Aij andBij
have each the same valuesE, A andB respectively, and these are given by those chosen for
the monodisperse case. We have further assumed thatλ(T ∗) is the same for both components,
and is given by the linear behaviour labelled A in figure 2(a). For the other coefficients we are
taking values which are in reasonable agreement with those corresponding to the Ar–Kr binary
mixture [29]. However, unlike the monodisperse case, we have yet to check out whether our
results forλ = 1 reproduce the Monte Carlo results shown in [29]. These values are:

α = d1

d2
= 0.8 κ = ε11

ε22
= 0.72 and ζ = ε12√

ε11ε22
= 0.98.

In order to carry out calculations of the phase behaviour as a function of concentration it is
necessary to evaluate the derivative of the Gibbs free energyG, at a givenT , at all concentrations
for different values of the pressureP . Then, at a given pressure, we obtain the values of the
concentrationsxG andxL of the mixture for gas (G) and liquid (L) phases in equilibria. These
calculations are repeated for different values ofP . Even within our model the calculations,
while reasonably straightforward, are lengthy. Moreover, some care needs to be taken in the
calculations of excess properties. Recall thatG/NkBT is obtained directly from equations (2)
and (5), using standard thermodynamic relations. Figure 6 shows the pressure–concentration
‘gas–liquid’ equilibria at the end rich in component 2 (in figure 6,x = x1 = 1−x2 atT ∗ = 0.8).
We find that both gas and liquid phases converge towards what appear to be a critical point.
More calculations are in progress and will be reported on completion.
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(a)

(b)

Figure 5. (a) Temperature dependence of the collapse coefficient used in the calculation of the
phase diagram shown in (b). (b)T ∗–ρ∗ phase diagram of a sterically stabilized colloidal dispersion
which is obtained by using theλ(T ∗) shown in (a). G, F, L and S denote the gas, fluid, liquid and
solid phases respectively. L+G indicates the liquid–gas coexistence region, and similarly for S+L.

4. Discussion

In the preceding section we presented results for the phase behaviour of monodisperse and
bidisperse sterically stabilized colloidal dispersions based on the assumptions of a very simple
model effective pairwise additive, temperature dependent, double Yukawa potential which
qualitatively predicts reasonable phase diagrams for these systems.
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Figure 6. Pressure–concentration gas–liquid equilibria at the rich end of component 2 of a
bidisperse sterically stabilized colloidal dispersion atT ∗ = 0.8, using the collapse coefficient shown
as (A) in figure 2(a). The pressure is given in reduced units and the concentrationx = x1 = 1−x2.
Squares denote the gas phase, crosses the liquid phase; broken and solid lines are guides to the eye,
in order to show the region of gas–liquid equilibrium. Note that the squares and crosses appear to
converge to a critical point (not shown).

The key to our model potential is the assumption that the inverse decay length of the
repulsive Yukawa, the collapse coefficient, depends on temperature. Since the core of the
double Yukawa potential is viewed as comprising the dispersed solid particles and their
polymer coating, variations of the polymer layer thickness with temperature characterize
λ(T ∗). This assumption is supported by established, semi-empirical, theories of polymer
solutions. Canessaet al [23] used the Flory–Huggins (FH) theory [30] to relate a chain
collapse to a decrease in solvent quality with temperature, assuming that the exchange energy
in the FH theory varies linearly withT . Moreover, Gallegoet al [31] examined the relationship
between the one-component macroparticle approach, discussed in the preceding section, and
the Scheutjens–Fleer (SF) [32] model for the interaction of planar surfaces with adsorbed
polymer layers. SF introduced a mean field theory for a lattice model of polymer adsorption
that constitutes a generalization of the FH theory to the case of inhomogeneous systems. In
restricted equilibrium, namely when the total amount of adsorbed polymer between the plates
is constant, Gallegoet al have shown that the SF model exhibits a decrease in the polymer
layer thickness with increasingT , consistent with our one-component macroparticle model.
We are assuming that similar results will prevail in the binary mixture case.

There appear to be similarities between the phase behaviour predicted by our model for
sterically stabilized colloidal dispersions and that found experimentally for polymer solutions.
Experimentally only one case has been found where these similarities do exist. Our results
suggest that there is a case to explore experimentally such similarities even further.

The results obtained with our DY model potential provide two important insights that any
fundamental theory must take into account. First, they suggest that the details of the polymer
conformations are not too important; only the amount of stretching and compaction appear to
matter. Note that the polymer functionality is only grossly taken into account by the different
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temperature dependence assumed for the collapse coefficient. Second, they also suggest that it
is not possible to separate out the free energy contributions due to the polymer conformations
from the polymer–solvent interaction, namely the solvent quality as a function ofT . To our
knowledge Doland and Edwards [33] were the first to attempt to overcome this difficulty.

On attempting to develop a robust theory for the effective interactions in sterically
stabilized colloidal dispersions, it is no longer possible to proceed as in the cases of either
charge [34] or depletion [35] stabilized colloidal dispersions. In both these cases, within some
constraints, the effective Hamiltonian of the macroparticles can be written, in the canonical
ensemble formalism, as

Heff = Hm + F ′ (7)

whereHm is the direct, or bare, Hamiltonian of the macroparticles, andF ′ is the Helmholtz free
energy of the ‘other particles’ in the external field of a fixed configuration of the macroparticles
(in charge stabilized colloidal dispersions, the ‘other particles’ include the counterions, coions
and added salt particles; in depletion stabilized colloids, the ‘other particles’ are the free
polymers). In equation (7)F ′ is a function of the instantaneous positions of the macroparticles
and the thermodynamic state of the system. However, the partition function of the ‘other
particles’, integrates out their degrees of freedom, namely their positions and momenta. This
procedure cannot be carried out in sterically stabilized colloids because the polymers are
attached to the macroparticles. Hence the partition function depends not only on the positions
and momenta of the polymers but also on the relative positions of the macroparticles. Here a
new approach is needed. Promising progress has been reported by Löwen and coworkers [36],
but much more remains to be done before the theory for the effective interactions in sterically
stabilized colloidal dispersions is regarded as being in a satisfactory state.
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